Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing.

نویسندگان

  • Denise M Akob
  • Lee Kerkhof
  • Kirsten Küsel
  • David B Watson
  • Anthony V Palumbo
  • Joel E Kostka
چکیده

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate.

Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensi...

متن کامل

Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI).

Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiate...

متن کامل

Uranium reduction in sediments under diffusion-limited transport of organic carbon.

Costly disposal of uranium (U) contaminated sediments is motivating research on in situ U(VI) reduction to insoluble U(IV) via directly or indirectly microbially mediated pathways. Delivery of organic carbon (OC) into sediments for stimulating U bioreduction is diffusion-limited in less permeable regions of the subsurface. To study OC-based U reduction in diffusion-limited regions, one slightly...

متن کامل

Bioreduction of uranium in a contaminated soil column.

The bioreduction of soluble uranium [U(VI)] to sparingly soluble U(IV) species is an attractive remedial technology for contaminated soil and groundwater due to the potential for immobilizing uranium and impeding its migration in subsurface environments. This manuscript describes a column study designed to simulate a three-step strategy proposed for the remediation of a heavily contaminated sit...

متن کامل

Metabolically active microbial communities in uranium-contaminated subsurface sediments.

In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 22  شماره 

صفحات  -

تاریخ انتشار 2011